Using Image Similarity and Asymmetry to Detect Breast Cancer

نویسندگان

  • Dave Tahmoush
  • Hanan Samet
چکیده

Radiologists can use the differences between the left and right breasts, or asymmetry, in mammograms to help detect certain malignant breast cancers. An image similarity method is introduced to make use of this knowledge base to recognize breast cancer. Image similarity is determined using a contextual and then a spatial comparison. The mammograms are filtered to find the most contextually significant points, and then the resulting point set is analyzed for spatial similarity. We develop the analysis through a combination of modeling and supervised learning of model parameters. This process correctly classifies mammograms 80% of the time and thus asymmetry is a measure that can play an important role in significantly improving computer-aided breast cancer detection systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Breast Asymmetry Using Anatomical Features-a Review

Radiologists can use the differences between the left and right breasts, or asymmetry, in mammograms to help detect certain malignant breast cancers. An image similarity method is introduced to make use of this knowledge base to recognize breast cancer. Image similarity is determined using a contextual and then a spatial comparison. The mammograms are filtered to find the most contextually sign...

متن کامل

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

Extraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images

Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Extraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images

Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006